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A PRIORI ERROR ESTIMATES FOR NUMERICAL 
METHODS FOR SCALAR CONSERVATION LAWS. 

PART I: THE GENERAL APPROACH 

BERNARDO COCKBURN AND PIERRE-ALAIN GREMAUD 

ABSTRACT. In this paper, we construct a general theory of a priori error esti- 
mates for scalar conservation laws by suitably modifying the original Kuznetsov 
approximation theory. As a first application of this general technique, we show 
that error estimates for conservation laws can be obtained without having to 
use explicitly any regularity properties of the approximate solution. Thus, we 
obtain optimal error estimates for the Engquist-Osher scheme without using 
the fact (i) that the solution is uniformly bounded, (ii) that the scheme is total 
variation diminishing, and (iii) that the discrete semigroup associated with the 
scheme has the L1-contraction property, which guarantees an upper bound for 
the modulus of continuity in time of the approximate solution. 

1. INTRODUCTION 

This is the first of a series of papers in which we develop a theory of a priori 
error estimates, that is, estimates given solely in terms of the exact solution, for 
numerical methods for the scalar conservation law [14] 

(l.a) vt+V-f(v)=O in(O,T)xIR< 

(1.1b) v(0) = vo on rd. 

Our main long-term goal is to obtain a theory of a priori error estimates which 
(i) can be applied to a large class of numerical schemes, 

(ii) does not require regularity properties of the approximate solution, 
(iii) takes into account the properties of the triangulation, 
(iv) takes into account the smoothness of the exact solution. 
In this paper, we show how to obtain such a theory by a slight modification of 

the original Kuznetsov approximation theory for conservation laws [15]. We then 
give an application with the purpose of stressing the point (ii) above. Thus, we 
show how to obtain optimal error estimates for the Engquist-Osher scheme without 
explicitly using any regularity property of the approximate solution. Unlike previous 
work, we do not make use of the fact that the approximate solution is uniformly 
bounded, nor that the scheme is total variation diminishing, nor do we use the 
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Ll-contraction property of the discrete semigroup, which leads to an estimate of 
the modulus of continuity in time of the approximate solution. Instead, we use the 
regularity properties of the entropy solution. 

A theory of a priori error estimates with the above properties does not exist for 
scalar conservation laws. To shed light into this unfortunate situation, we briefly 
describe the historical development of the theory of error estimates for conservation 
laws. As a tool for illustration, let us consider the problem of obtaining an upper 
bound of the distance between the entropy solution v of (1.1) and the bounded 
solution u of the following parabolic initial value problem: 

(1.2a) tut + V f f(u) -V * (V(tu) Vtu) = O in (O, T) x Rd 

(1.2b) u(O) = vo on dI 

where v is a positive nonlinear function. It is very natural to consider this problem 
since it is well known that the entropy solution v can be obtained as the limit of 
solutions u of the above initial parabolic problem as the viscosity v goes to zero; see 
[14]. Moreover, several numerical schemes of interest have equation (1.2a) as their 
so-called model equation. This means that it is reasonable to expect that both u 
and the approximate solution of the corresponding numerical scheme would behave 
in a similar way; see, for example, [12] and [11]. The method of obtaining error 
estimates for u would then constitute a model for obtaining error estimates for the 
corresponding numerical scheme. 

Kuznetsov [15] was the first to prove error estimates for numerical schemes for 
(1.1). Inspired by the work of Kruzkov [14], he established a key approximation in- 
equality [15, Lemma 2] with which he obtained the following estimate [15, Theorem 
31: 

(1.3) 

|| u(T) - v(T) hL<(Rd) ? V8 VO lRd) { jj (u) V vu I dxdt} 

Kuznetsov then applied the same approach to obtain error estimates for monotone 
schemes in uniform Cartesian grids. Since these schemes have a model equation 
of the form (1.2a), where the viscosity v is proportional to the grid size Ax, it 
was natural to use the approach used for u as the model approach for this, more 
complicated, case. As the model inequality above indicates, Kuznetsov was bound 
to obtain both an estimate of the total variation and of the uniform norm of the 
approximate solutions determined by the monotone schemes he considered. He 
proved that the total variation and the uniform norm are uniformly bounded with 
respect to Ax and concluded that monotone schemes in uniform Cartesian grids 
converge as (Z\x)1/2 to the entropy solution in the L?(L1)-norm. This pioneering 
work strongly influenced the subsequent studies of error estimates for numerical 
schemes for (1.1). Thus, the works of Sanders [22], Lucier [17,18,19], and Cockburn 
[1,2,3] used the approach used by Kuznetsov and had to obtain regularity properties 
of the approximate solution to obtain error estimates. In particular, they all used 
the fact that the total variation of the approximate solution was uniformly bounded. 

It soon became apparent that progress along the above approach was going to 
be very hard to achieve, since even the simplest schemes, the monotone schemes, 
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could not be proven to generate approximate solutions with uniformly bounded 
total variation when defined in general triangulations. To obtain error estimates 
thus became an extremely difficult task, and the main focus of research shifted 
to the search of weaker smoothness properties with which convergence, not error 
estimates, could be proven. Because of this, DiPerna's theory of convergence of 
measure-valued functions [9] became the main tool for the study of the convergence 
of numerical schemes for the conservation (1.1). Szepessy [23, 24] was the first 
to recognize this fact and proved convergence to the entropy solution of (1.1) of 
the approximate solution given by the Streamline Diffusion method with shock- 
capturing terms. Later, Coquel and LeFloch [8] applied DiPerna's theory to finite 
difference schemes in Cartesian grids, and Cockburn, Coquel and LeFloch [4] to 
finite volume methods defined in general triangulations. 

A third stage in the development of the theory of error estimates for scalar 
conservation laws started when Cockburn, LeFloch and Coquel [5] realized that 
the measure-valued theory of DiPerna could be totally bypassed by using a suitable 
modification of the Kuznetsov approximation result; after all, both DiPerna and 
Kuznetsov were inspired by the same source, namely, the paper by Kruzkov [14]. 
Error estimates were thus obtained with (essentially) the same hypotheses used 
to prove convergence with the measure-valued solutions approach. More precisely, 
in [5], it was proven that monotone schemes defined in general triangulations, and 
some high-order accurate schemes built upon them, converge to the entropy solution 
finite volume methods with a rate of no less than (Ax)1/4 in the L?(L1)-norm. 
Also, Cockburn and Gremaud [7] proved that the shock-capturing Discontinuous 
Galerkin method converges with a rate of no less than (Ax)1/4 in the L' (L')-norm 
and that the shock-capturing Streamline Diffusion method converges with a rate 
of no less than (Ax)1!8 in the L??(L1)-norm. Two new ideas made these results 
possible. The first idea was a new way of estimating the total variation of the 
approximate solution which, in terms of our parabolic regularization u, reduces to 
the standard L2-stability result, 

(1.4) 1u u(T) L2(Rd) + 2 Jj v(u) vu 2 dxdt < |L VL2(Rd) 

easily obtained by multiplying equation (1.2a) by u and integrating over (0, T) x Rd; 

see [4, 13, 7, and 26]. Combining this stability result with the estimate (1.3), we 
obtain 

1fl u(T) - v(T) lLl(R)Vd) 2 Vo 11 )l Vo |L/2(d) { JJ v (u) dxdt }1/ 

This explains, in a nutshell, the rate of convergence of (Ax) 1/4 for monotone 
schemes obtained in [5] and in [26]. 

The second idea requires more elaboration. For the sake of clarity, we did not 
mention that Kuznetsov approximation inequality can be used, in the general case, 
only if an estimate of the modulus of continuity in time of the approximate solution 
is available. For monotone schemes, this estimate follows easily from an estimate of 
the total variation and from the L1-contraction property of these schemes. However, 
this property does not hold for other types of schemes. The second idea consists in 
modifying the original Kuznetsov approximation inequality so that no estimate of 
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the modulus of continuity in time is needed anymore. This was done in [5] for finite 
volume methods and in [7] for the shock-capturing Discontinuous Galerkin and the 
shock-capturing Streamline Diffusion methods. An application of this idea to the 
model case under consideration gives the following error estimate: 

|| u(T) -v(T) lLli(Rd) < 4 V4 vo TV(Rd) V() Vu dx dt} , 

which shows that the (very small!) price we have to pay for not having to estimate 
the modulus of continuity in time of the approximating function u is a constant 4 
times bigger multiplying the upper bound of the error (compare with the estimate 
(1.3)!). If now we apply the estimate of the total variation (1.4), we get 

|| a(T) v(T) |lLl(Rd) < 21/4 1 VO ITV(Rd) I vo IIL2(Rd) 1 1 1 M(a) dxdt} 

This is a rough explanation of the rate of convergence of (Ax)1/4 obtained in [5], 
for a class of high-order accurate antidiffusion schemes, and in [7], for the shock- 
capturing Discontinuous Galerkin method. 

To the knowledge of the authors, this is the current status of the theory of error 
estimates for conservation laws. It is indeed not very encouraging to realize that 
after all the effort reported above, the orders of convergence, namely, 1/2,1/4,1/8, 
seem to be converging to the wrong limit! However, we claim that a slight change 
of point of view in the original Kuznetsov approach can dramatically improve this 
situation. As noted by Cockburn and Gremaud [7], Kuznetsov's approach is essen- 
tially an approach leading to a posteriori error estimates, since the upper bound for 
the error is given in terms of the approximate solution; see (1.3)! As a consequence, 
it is not surprising to be forced to prove regularity properties of the approximate so- 
lution in order to obtain a rate of convergence. Thus, Kuznetsov's approach should 
be used for obtaining a posteriori with which adaptivity strategies could be defined; 
see the work by Lucier in [16,19] and the recent work by Cockburn and Gau [6]. In 
this paper, we show that this new point of view induces, in a very natural way, a 
slight change in Kuznetsov's approach with which we construct a general procedure 
for obtaining a priori error estimates, that is, for obtaining upper bounds for the 
error that depend solely on the exact solution. 

The paper is organized as follows. In ?2, we start by rewriting the original 
Kuznetsov approach in our own notation. This allows us to compare Kuznetsov's 
approach with our new approach, which is described in ?3. The remaining of 
the paper is devoted to the application of this new approach to two relatively 
simple, but relevant, cases with the main purposes (i) of clearly illustrating the new 
procedure, and (ii) of showing that it is possible to obtain optimal error estimates 
for conservation laws without having to establish any regularity properties of the 
approximate solution. Thus, we obtain optimal error estimates for (i) the parabolic 
solution of (1.2), Theorem 4.1, and for (ii) the approximate solution given by the 
well-known Engquist-Osher scheme in uniform grids, Theorem 6.1; we consider only 
the one-dimensional case d = 1 for the sake of simplicity. The proof of Theorem 4.1 
is given in ?5. It provides a simple 'map' for the more involved proof of Theorem 
6.1, given in ?7. We end in ?8 with some concluding remarks concerning extensions 
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of the above results to the multidimensional case, and a brief description of future 
work. 

The a priori estimates presented in Theorems 4.1 and 6.1 are the first of its 
type for nonlinear scalar conservation laws. For the steady-state Hamilton-Jacobi 
equations, Perthame and Sanders [21, Theorem 2] obtained error estimates which 
in some special cases can be considered a priori in the sense used in this paper; in 
the general case, their upper bound for the error does depend on the L?-norm of 
the approximate solution. 

2. KUZNETSOV'S ORIGINAL APPROACH 

Since our approach to obtaining error estimates for the conservation law (1.1) is a 
modification of Kuznetsov's original approach, in this section we rewrite Kuznetsov's 
approach step by step in our notation. This will help us to motivate the steps of our 
approach and to render clear the similarities and differences of the two approaches. 
To fix ideas, in what follows, u = u(t', x') stands for the bounded solution of the 
parabolic problem (1.2) and the function v = v(t, x) stands for the entropy solution 
of the conservation law (1.1). 

a. Choosing the entropy dissipation form E(u, v; tN). Kuznetsov picked the 
so-called Kruskov form 

E(u, v; T) - jj T(u, v(t, x); t, x) dx dt, 
O d 

where 

ET (u, C; t, x) - J U(u(t', x') - c) at/ o dx' dt' 
O d 

- jTj F(u(t', x'), c) . Vx' o dx'dt' 
o d 

+ U(U(-r, x') - c) 0(t, xi, T x') dxl 
d 

U((O, x') - c) 0(t, x, 0, x') dx' 
d 

and the entropy U and its flux F (that is, &,F(w, c) - f'(w) U'(w - c)) are given 
by 

U(w - C) = w - c 

F(w, c) = (f(w) - f(c)) sign(w - c). 

The function o = (t, x, t', x') is taken as follows: 

d 

wet (t - t') fI w (x, -xi), (x, t), (x', tl) R d x R+, 
2t 1 

where et and Ex are two arbitrary positive numbers and 

wA(s)-W(-), 
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for any s c R, A = Et, 6,. The function w is a smooth function satisfying the 
following properties: 

(2.1a) w(t) > 0 for t > 0, 

(2.1b) w(t) = w(-t) for t > 0, 

(2. 1c) the support of w is [-1 ,11 , 

(2. ld) j w(r) dr = 1/2. 

Note that o(t, x, t', x') is a smooth approximation of 8(t - t') 6(x - x'). 
There are two main motivations for this choice of E(u, v; r). The first is that 

if u is the entropy solution of (1.1) with initial data vo = uo, then u satisfies the 
so-called entropy inequality, or, equivalently, O'l,'x (u, c; t, x) < 0 for c E R, and 
(t, x) E (0, T) x Rd. This implies that E(u, v; r) < 0. Thus, the form E(u, v; Or) 
measures how close from being an entropy solution the approximate solution u is. 
The other reason will become apparent in the next step. 

b. The dual form E*(u, v; T) and the error term Terr (u, v; 4). In this step, a 
dual form E*(u, v; Tr) and an error term Terr(U, v; r) are found such that 

E(u, v; T) - - E*(u, v; T) + Terr(U, V; T) 

-E(v, u; T) + Terr(U, V; T), 

by solely taking into account the following equalities: 

at(p = -Ot,(P1 

vxp =-Vx'9O 

U(w-C) = U(c-W), 

F(w, c) = F(c, w). 

Since v is the entropy solution, we have that E*(u, v; r) = E(v, u; T) < 0 (this is 
the other main reason for choosing the form E(u, v; T) as in the first step), and we 
obtain 

Terr (U, v; T ) = E(u, v; 'r) + E(v, u; r) 

<E (u,v; T), 

where the error term Terr(U, v; r) contains the information of the distance between 
the functions u and v. In fact, as the parameters Et and Ex defining o go to zero, 
we expect the term Terr(U, v; r) to converge to 

e(T) -e(), 

where the error e(t) is given by 

e(t) = j U(u(t, x) - v(t, x)) dx. 

This is why the term Terr(U, v; T) is called the "error term". 
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c. Finding a lower bound of the error term Terr(U, v; i-). Setting 

W(t) = Wt (s) ds, 

we can rewrite Kuznetsov's lower bound for the error term as follows: 

Terr (U, v; 7) > 2 W(T) e(T) - 2 W(T) e(O) 

- 2 W(T) I V IL?(O,T;TV(Rd)) {EX + 11 f'(v) 11 et} 

- 2W(T) {ex || Vx'U ||L?(O,T;Ll(Rd)) + Et 11 Ut' IIL?(OjOT;L1(Rd))}, 

where II f'(v) I P = SUPtE(0o,) I f'(v(t, x)) |L-* Kuznetsov obtained this inequality for 
XERd 

T > Et only, a case in which we nave 2 W(T) = 1. 

d. Finding an upper bound for the error e(T). Putting together all the 
results of the previous steps, we obtain the following inequality: 

e(T) < e(O) + I vo ITV(Rd) {ex + 11 f'(v) || et } + E(u, v; T)/2 W(T) 

+ {Ex || Vx/ U H|LO(O,T;L1(Rd)) + Et || Ut' ||L?(O,T;L1(Rd)) }. 

e. Estimating E(u, v; T)/W(T) and getting regularity properties of u. At 
this point, to get an error estimate we only have to estimate the Kruskov form 
E(u, v; T)/W(T), the total variation of u and its modulus of continuity in time. To 
estimate the Kruskov form, the form is first split into the sum of two terms, 

E(u, v; T) = - Ediss((u, v; T) + Ereg(u, v; T), 

which, in this case, are estimated as follows: 

Ediss (u, v; T) = j jj U"(u - v) v(u) I Vu 12 dx' dt' dx dt 
0 d o d 

> 0O 

Er,g(a, v; T)/W(T) - 1 1 -v (v(u)VU(u v)) o dx' dt' dx dt/W(T) 
0 d 0 d 

< { j 
v(u) vu 

a 
dx'dt'} 

We also have 
|| V U IIL?(O,T;Ll(Rd)) < I Uo ITV(RdR), 

a| Ut/ IIL?(O,T;Ll(Rd)) < 11() aM 0 UO ITV(Rd)- 

f. Getting the error estimate. The error estimate follows now from the results 
of the two previous steps after a couple of minimizations on the parameters Et and 
ex. In this case, we can send Et to zero and then minimize over ex to get 

e(T) < e(O) + 2{ I vo ITV(Rd)) + ? UO ITV(Rd)} {T 1 V(u) 0 I UO ITV(Rd)} 

where (1 V(U) = suptE(o,T) v(u(t', x')). 
X/ ERd 
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3. A NEW APPROACH FOR OBTAINING A PRIORI ERROR ESTIMATES 

We next illustrate the main steps of the new approach. (The results stated below 
will be proven rigorously in ?5.) 

a. Choosing the entropy dissipation form E(u, v; T). We pick the form 
E(u, v; T) trying to capture in it all the information about the definition of the 
solution u. Thus, in our particular case, we pick E(u, v; Tr) as follows: 

E(u, v; T) J er(u, v(t, x); t, x) dx dt, 
o d 

where 

e (U, C; t, x) J U'(u (t', x') - c) L(u) (t', x') p dx'dt', 
o d 

where U and Sp are as in Kuznetsov's approach, and 

L(u) -Ut + Vx' * f (u) - Vx' (v(u) V,,, u). 

Note that with this choice, we have E(u, v; T) = 0 for every function v since L(u) 
0. 

b. The 'dissipative' and 'divergence' parts of E(u, v; T). In this step, we try 
to identify the part of the form E(u, v; T) that will ensure the correct production 
of entropy dissipation. We call such a part, the 'dissipative' part of E(u, v; T) and 
we denote it by Ediss(u, v; T). Our objective is to be able to write 

E(u, v; T) = - Ediss (U, v; T) + Ediv (u, v; T), 

where the 'dissipative' part was chosen in such a way that the remaining part (which 
usually has a 'divergence' form), Ediv (u, v; T), could be treated without having to 
use the entropy production properties of the scheme. 

In this case, we have 

Ediss(U v; T) UJ|JJ {U(U v) v(U) V Vs'U 12} o dx' dt' dx dt, 
0 d 0 d 

Ediv(U, v; T) J J DIV(u, v) o dx' dt' dx dt, 
0 d o d 

where 

DIV (u, v) =(U (u- V))t, + Vx/, (F (u, v) - v(u) VX,, U (u -v)) 

c. Finding the dual form Ed*iv(u, v; T) and the error term Terr(U, v; T). Next, 
we find a dual form Ed*iV(u, v; T) and an error term Terr(U, v; T) such that 

Ediv(U, v; T) =- Ed*iV(u, v; T) + Terr(U, v; T). 
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In this case, the dual form is found as in the Kuznetsov approach. The error term 
is exactly the same. In this way, we have 

e(T) - e (O) Terr(U, v; r) 

E(u, v; T) + Ed*iv (uv; T) - Ediss(u, v; T) 

=div(U, v; r) -Ediss(U, V; 7), 

where the dual form is, in this case, 

E*ivu v;) - TE(v, u) dx dt dx' dt', 
0 d 0 d 

where 

TE(v, u) = U(v - U)t + Vx F(v, u) -Vx (U'(u - v) v(v) Vxv), 

and where for the sake of simplicity we have assumed that v is smooth. Note that the 
dual form Ed*iv (u, v; r), is nothing but the 'truncation error' for the entropy/entropy 
flux pair U/F. This is our main motivation for the choice of E(u, v; r). 

d. Finding a lower bound of the error term Terr(U, v; T). Next, we want 
to obtain a lower bound of the error term Terr(U, v; r) that is independent of the 
regularity properties of a. In the case under consideration, we obtain the following 
inequality 

Terr(U, V; or) > W(T) e(T) + w(r - t) e(t) dt 

- W(T) e(O) - f w(t) e(t) dt 

- 4 W(T) I vo ITV (Rd) {EX + ?I f '(V) fl et} 

Note that there is no term that needs to be controlled by using regularity properties 
of u. 

e. Finding an upper bound for the error e(T). The price we have to pay 
for this advantage is to solve a sort of Gronwall-Volterra inequality. Indeed, in this 
case, after putting together the results of the previous steps, we obtain the following 
inequality: 

W(T) e(T) + j w(r - t) e(t) dt < W(T) e(O) + j w(t) e(t) dt 

+ 4 W(t) I VO ITV(RTd) {EX + 11 f'(V) 11 (t} 

+ E*(u, v; r) - EdiSS(u, v; T), 

which can be solved to give the following inequality 

e(T) < 2 e(O) + 8 (Ex + ?ct jf (V) ||) I VO ITV(R) 
?2 sup {E*i(a v; t)/W(t)} 

O<t<T 

-2 inf {Ediss(u,v;t)/W(t)j} 0<t<T 
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f. Finding an upper bound for the dual form E* (u, v; t) and the dissipation 
form Edi,s(u, v; T). At this point, to get an error estimate we only have to obtain 
estimates of the dual and the dissipation forms. The new feature we introduce in 
this paper is that it is possible to estimate the dual form E*(u, v; t) without tak- 
ing into account the entropy dissipation properties of the scheme (which, roughly 
speaking, have been 'transferred' into the dissipation form Edi,,(u, v; T)) and with- 
out having to use the regularity of its approximate solution u. The estimate of the 
dual form depends only on the regularity properties of the entropy solution v. 

Indeed, in our case, we get 

EdiSs(U, V; T) > 0, 

E* V(u ; T) < Ereg (U, v; T). 

We want to emphasize that it is possible to estimate the form Ereg (U, v; T) without 
using regularity properties of u by performing a couple of simple integration by 
parts. To see this, set V(u, v) f "u v(s) U'(s - v) ds and assume that the entropy 
solution v is smooth for the sake of clarity. We have 

Ereg (U, V; T) Ajj j AX' V(u, v) o(t, x, t', x') dx dt dx' dt' 

jTjjTj V(u, v) A/x, (t, x, t', x') dX dt dx' dt' 

- j jj V (u v) V x Vx (t, x, t', x')dxdtdx'dt' 

= jj jTj u'u - v) v(v) Vxv V x, t', x') dx dt dx' dt' 

2 
<- T I VO ITV(R) 11 V(V) 11 W(T). 

Ex 

If v is not smooth, a similar estimate holds with fl v(v) fl replaced by l vvfl; see 
Theorem 4.1. 

g. Getting the error estimate. This step is essentially identical to step 2f. fn 
this case, we get 

|| u(T) - v(T) 11LI(R) < 2 | uo- vo IILI(Rd) + 4 1 vo ITV(R){ 8Tfl vv 111 

Before considering the first application of the above approach, let us briefly 
discuss the main differences between Kuznetsov's approach and the approach we 
have proposed: 

(i) The choice of the form E(u,v; T). Kuznetsov picks E(u,v; T) as the 
original Kruskov form. We construct E(u, v; T) directly from the numerical scheme 
under consideration. This might give more flexibility in inserting the characteristics 

qitbe 5Kb,QeeJ iatw ti1ktqm, Ei E:w>>X Q C, 
(ii) The choice of C and o. Aftfiougfi we fiave not done th1s in t1Ae above 

steps, it is possible to use arbitrary even entropy functions U. This gives greater 
flexibility and allows to treat cases impossible to treat with the standard Kruzkov 
entropy U(w - c) = I w-c l; see [1,2,3], [5], and [7]. Also, the choice of O does not 
have to be reduced to the one displayed in ?2a. (This will be exploited in future 
work.) 
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(iii) The modulus of continuity in time of u is not required. The way 
in which the lower bound for the error term Terr (U, v; T) is obtained is completely 
different for Kuznetsov's approach. It is possible to avoid having to use the mod- 
ulus of continuity in time of the approximation u, by a sort of Gronwall-Volterra 
inequality; see [5] and [7]. 

(iv) No regularity properties of u is needed to get error estimates. We 
have shown how to estimate the dual form E* (u, v; T), or, equivalently, Kuznetsov's 
form Ereg (U, v; T) in terms of the entropy solution only. 

4. A FIRST APPLICATION: THE MODEL PROBLEM 

As a first application of the general theory of a priori error estimates, we obtain 
an upper bound between the entropy solution v of (1.1) in the one-dimensional case 
d = 1, and the solution u, in the sense of Vol'pert and Hudjaev [27], of the parabolic 
initial value problem 

(4. 1a) ut + V f (u) -V (v(u) Vu) = O in (O, T) x Rt, 
(4.lb) u(O) = uo on R. 

We include this result here because solutions of the above Cauchy problem mimic 
the behavior of several numerical schemes and so the estimate can be considered 
to be a continuous model of the estimate for the approximate solutions. Moreover, 
it is very simple to illustrate the approach displayed in ?3 in this case since the 
function u is smooth. Finally, we want to strongly emphasize that, against wide- 
spread belief, error estimates for nonlinear scalar conservation laws can be obtained 
without having to obtain regularity properties of the approximate solution. 

Thus, the following result can be proven, see ?5, assuming only that u is a strong 
solution of (4.1) and that the viscosity coefficient v(u) is positive. No estimate of 
the modulus of continuity in time, or estimate of the total variation in space, or 
estimate of the uniform norm of u is explicitly used; only the standard regularity 
properties of the entropy solution v are used. Note how the bound for the error is 
written solely in terms of the entropy solution v. 

Theorem 4.1. Suppose that the nonlinear viscosity coefficient v is positive on 
the range of u. Let u be the solution of the parabolic problem (4.1) and let v 
be the entropy solution of the conservation law (1.1) (with d = 1), where vo E 

L?(R) n BV(R); set 'k(vo) = [infXC vo (x), supx Rvo (x)]. Then 

|| u(T) - v(T) IIL'(R) ? 2 11 uo -vo IIL(R)+ 4 I VO ITV(R) f8 T 11 vv 1} 1/2, 

where 

vvl = sup v(w). 
wCR(vo) 

When the entropy solution has a finite number of discontinuity curves on each 
compact set of (0, T) x R, we can take 

IIvV = sup v(v(t, x - 0), v(t, x + 0)), 
tE(0,7) 

where 
v+ 

v(v,' V+) =V v (s) ds. 
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It is well known that the entropy solution can display a finite number of dis- 
continuity curves. For example, the number of discontinuity curves of the entropy 
solution of the Riemann problem is not bigger than one plus the number of inflec- 
tion points of the nonlinearity f; see [20]. See also the recent work by Tadmor and 
Tassa [25] on the piecewise smoothness of entropy solutions for (1.1). 

To end this section, let us stress the point that if we only assume that the solution 
u e C?(O, T; L1(IR)), we can take advantage of the special structure of the parabolic 
regularization term in (4.1a) to get the following estimate: 

II u(T) -v(T) IILI(R) ? II UO -VO IILI (lR) + I VO ITV(R){ 8T II vV 111 

However, we have chosen not to present this 'improved' result since we want the 
proof of Theorem 4.1 to serve as a simplified model of the (much more technical) 
proof of the corresponding result (Theorem 6.1) for the discrete approximate so- 
lution given by the fully discrete Engquist-Osher scheme. In fact, if we do not 
discretize in time but only in space, we can still use the abovementioned trick, but 
it is not possible to use it anymore for the fully discrete case. 

5. PROOF OF THEOREM 4.1 

In this section, we prove Theorem 4.1. To do so, we follow each of the steps of 
the new approach to a priori error estimates described in ?3. 

a. Choosing the entropy dissipation form E(u, v; r). In this case, we use the 
choice described in ?3a with L(u) = ut' + f(u)., - (z(u) u,, ),. In other words, we 
take 

Irr 
E(u, v; r) - j 8)(u, v(t, x); t, x) dx dt, 

where 

T(u, C; t, x) = (u (t', x', ), c) fo dx'dt', 

and 

'I (u, c) =U' (u - c) {Ut' + f (u)X, - (V(U) uxX)X'}. 

We take U and so as in Kuznetsov's original approach, but this time, we must 
minimize the constants of the right-hand side of the inequality resulting from the 
resolution of the Gronwall-Volterra inequality in ?3e. To do so, we take a sequence 
of functions w, satisfying (2.1) and being nonincreasing on (0, 1), that converges 
pointwise to 

for Is I < 1, 
0 otherwise. 

In what follows, we denote this limit process by 'w -- X'. Note that we have 

(5.1) lim I W ITV(R) = I X ITV(R) =1. 

b. The "divergence" and "'dissipative" parts of E(uh,v; T). The first step 
in obtaining the entropy inequality by the well-known vanishing viscosity method, 
[14], consists in rewriting 4(u, c) as follows: 

T4(u, c) = DIV(u, c) + LRED(u, c), 
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where 

DIV(u, c) {(U(u - C))t' + (F(u, c) - zJ(u) U(u -c)z) 

LRED(u, c) = {U"(u - c) v(u) (u, )2}. 

The first term is in divergence form and can thus be called the "divergence" part 
of I (u, c). The second term can be called the "local rate of entropy dissipation." 
This simple, but useful, decomposition of TI(u, c) allows us to rewrite E(u, v; T) as 
the sum Ediv(u, v; T) + Edi,s(u, v; T), where the "divergence" part Ediv(u, v; T) is 

Ediv(u, v; T) = JJJJ DIV(u, v) 5o(t, x, t', x') dx dt, 

and the "dissipative" part Edi,, (u, v; r) is 

Ediss(u, v; T) = JJJJ LRED(u, v) 5o(t, x, t', x') dx dt. 

We have the following immediate result. 

Proposition 5.1. Suppose that the nonlinear viscosity coefficient v is positive on 
the range of u. Then we have 

Ediss(U, V; T) > 0. 

c. The dual form Ed*iv(u, v; T) and the error term Terr(U, v; T). In this step, we 
perform a simple integration by parts and strongly use the structure of the auxiliary 
function W. Setting V(u, v) = fJV v(s) U'(s - v) ds, and taking into account that 
sot = -Wt' and 0x =-sox' we have 

EdiV(u, v;T) =jJj {(U(u - V))t, + (F(u, v)-V(u, v)x')x} 

* (t, x, t', x') dx' dt' dx dt 

- jTJjTj { - U(u - v) st' (t, x, t', x') - F(u, v) (0x' (t, x, t', x ) 

- V(u, v) sox'x' (t, x, t', x') } dx' dt' dx dt 

+ J jJJ U(u(r) - v) p(t, x, T, x') dx' dx dt 

- JJJ j/U(uo - v) p(t, x, 0, x') dx' dx dt 

- JJx/J {U(u - v) sot(t, x, t', x') + F(u, v) sox(t, x, t', x') 

+ V(u, v) soxx' (t, x, t', x') } dx' dt' dx dt 

+ J U(u(T) - v) Ws(t, x, r, x') dx' dx dt 

-t JJJ U(uo - v) so(t, x, 0, x') dx' dx dt. 
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Setting 

Edi(U v; T) jJ { U(u - v) ot (t x, t', x') - F(u, v) ox(t, xi t', x') 

-V(u, v) 'pxx' (t, x, t', x') } dx dt dx' dt' 

+ J U(U - v(T)) (T, x, t', x) dx dx' dt' 

- fff U(u - vo) 0(O, x, t', x') dx dx' dt', 

we have 

Ediv (u, v; T) -Ediv (u V; T) 

+ f U(u(T) - v) (p(t, x, T, x') dx' dx dt 

+ j U(u - V(T)) O (T, X, t', x') dx dx' dt' 

- jff U(uo - v) p(t,x,O,x')dx'dxdt 
R R 

- jJj U(u - vo) p(0, x, t', x') dx dx' dt' 

--Ed*iv(U v; T) + Terr(U, v; T). 

d. A lower bound of the error term Terr(U, v; r). 

Proposition 5.2 [7]. We have 

Terr(U, v; T) >W('T) e (T) + wet (T - t) e(t) dt 

-W(T) e(O) -j wet (t) e(t) dt 

-4 W(T) { || f '(v) I It + ?x } I VO ITV((R) 

For the sake of completeness, we give a proof of this result below. 

Proof. We see, from ?5c, that we can write Terr = T1 + T2 + T3 + T4, with the 
obvious notation. Let us start by estimating T1. Since 

(Uu(T, x') - v(t, x)) = U (U(T, X') - V(T, X')) 

+ {U(u(T, x') - v(T, x)) - U(u(T, x') - v(T, x'))} 

? {U(u(T, x') - v(t, x)) - U(u(T, x') - v(T, x))} 

> U (U(T, X') - V(T, X')) 

- Iv(T, x) -v(, x')l - lv(t, X) - V(T, x)l, 
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we get 

T = j j U (u(-r, x') - v(t, x)) o(t, x, T, x') dx' dxdt 
oJR 

> j J U (u(r, x') - v(T, x')) o(t, x, T, x') dx' dxdt 

-X J j j vQr, x') - v(t, x') 1 w(t, x, T, x') dx' dxdt 

- j j J (v (vr, x') - v (T, x) p (t, x, T, x') dx' dxdt 

> W(T) J U (u(T, X') - v(T, X')) dx' - W(T) { || f (V) || et + ex I Vo ITV(R) - 

Now, let us consider the second term, T2. Proceeding as for the first term, we get 

T2= j U (u(t', x') - v(T, x)) o(T, x, t', x')dx dx'dt' 

> j j j U (u(t', x') - v(t', x')) 92(T, x, t', x')dx dx'dt' 

-X j jji u(t', x') - v(r, x') I9(T, x, t', x')dx dx'dt' 

-J J Jj u(r, x') - v(T, x) Ip (T, x, t', x')dx dx'dt' 

> J Wt (T - t') { j U (u(t', x') - v(t', x')) dx' } dt' 

- W(r) {11 f'(V) 11 Et + Ex} I VO ITV(R). 

To estimate T3 and T4 we proceed in a similar way. We obtain 

T3 >-W(T) jU (u(O, x')-v(O, x')) dx' 

- W(T) {|| f'(V) 11 Et + IX} I VO IITV(R), 

T4 > -J W5t (t') j U((v(t', x') - v(t', x')) dx' 

- W(r) {j j f'(V) II Et + Ex} I VO ITV(R). 

This completes the proof. 0 

e. The approximation inequality. 

Proposition 5.3 (The approximation inequality). We have 

e(T) < 2 e(O) + 8 (ex + Etllf (V)||) I VO ITV(R) 

+2 lim sup {E* v(u,v;t)/W(t)}. 
W--+X O<t<T 

To prove this proposition, we need the following auxiliary result. 
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Lemma 5.4. Let 0: [0, T] -* IR+ be a nonnegative, measurable function such that 
for all T E [0, T] 

W (T) O(T) + j w(T - t) 0(t) dt < W (T) C + j w`(t) 0(t) dt, 

where w?? = X. Then, for T E [O, T], 

O(T) < 2C. 

Proof. If T < Et, we have for t E [0,T] that W"??(T - t) = w"??(t) _ 1/2 ct , and so 

O(T) < C. 

To estimate O(T) for T > et, we rewrite the inequality satisfied by O(T) as follows: 

0(T) < C + j {W (t) - W)(T - t)} 0(t) dt/Wo(T) 

rEt 

< C + {W (t) - w'(T - t)} 0(t) dt/W??(T), 

since for t > ct, w?(t) - wC(T - t) =-WC)O(T - t) < 0 and since 0(t) > 0. Since 
0(t) < C for t E (0, Et), this implies that 

rEt 

0(T) < {1 ? j {W (t) - W (T - t) } dt/W?? (T) } C 

<2C. 

This completes the proof. O 

We are now ready to prove Proposition 5.3. 

Proof of Proposition 5.3. We have, from Propositions 5.2 and 5.1, 

W(T) e(T) + wE (T - t) e(t) dt < W(T) e(O) + wEt (t) e(t) dt 

+ 4 W(T) { | fP(v) | Et + Ex} IVO ITV(R) 

+ Ediv (U,V; T). 

Passing to the limit in w, we obtain, for T E [O, T], 

W??(T) e(T) + j W ?(T - t) e(t) dt < W??((T) e(0) + j w`(t) e(t) dt 

+ 4 W (T) { f'(v) 11 Et + Ex } I VO ITV(R) 

?W (T) lim sup {Ed* (u,v;t)/W(t)}. 
W-4X tE(O,T) 

We can now apply Lemma 5.4 with 0 = e, and 

C =e(O) + 4 {H | f (v) | Et + Ex } |V ITV(R) + limX sup {Ediv(v v; t) /W(t)} 

This completes the proof. O 
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f. The estimate of lim,x SUPtE(o,T) { E* (u,v;t)/W(t)}. 

Proposition 5.5. For U(w) = w 1, we have, 

lim sup {Ed(uv;t)/W(t)} < -T I vo ITV(R) 11 fv Ili 
W-*X O<t<T Ex 

where 11 IV is defined as in Theorem 4.1. 

To prove this proposition, we need the four auxiliary results that follow. 

Lemma 5.6. We have 

-F(u, v) + F(v, u) j {f'((u + v)/2) - f'(s)} {U'(s - u) + U'(s - v)} ds 

for any even function U such that U(O) = 0. In particular, for U(w) = w 1, we 
have 

-F(u, v) + F(v, u) = 0. 

The proof of this result is straightforward; see, e.g., [7]. 

Lemma 5.7. Set V(u, v) = fvu v(s) U'(s - v) ds. Then, for U(w) = w , we have, 

v+ (V(, v+)-V(u, v-)) < 
v+ v v(s) ds. 

This inequality follows easily from the definition of V(u, v) and that of U. 

Lemma 5.8. We have 

sup D(t, x) dt < 2w ITV(R) W(T) 
oXER Ex 

where 

D(t, x) = Ox, (t, xi t', Ix') I dxl dtl. 

Proof. By the definition of o in ?2a, 

D(t, x) ?lwIE(x j Iwett - t') I dt', 

and so, after simple algebraic manipulations, we get 

J sup D(t, x) dt < w1 IV(R) jj we (t-t') dt' dt 
oXEDR Ex o 

2 2IW ITV(R) f 

= 10 ITV( |(T - s) wet (s) ds 
exo 

< 2 1 w ITV(R) T W(T) 
'Ex 

This completes the proof. D- 
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Lemma 5.9. There exists a sequence f vj }jjrj of functions in C?(O, T; L1(lR)) that 
converges to v in L? (O, T; L1((R)) such that 

vj(t) ITV(R) ? I VO ITV((R) for j E N,t E (0, T), 
inf vj(t,x) > inf vo(x) for j E N,t E (0,T), 
xEIR xG-R 

supvj(t,x) < supvo(x) for j E N,t E (O,T). 
xGR xCR 

Proof. Take vj(t,x) = (6j * v(t))(x), where 8j(y) = j 8(j y) and 6 satisfies the 
conditions (2.1). Since v E Co (0, T; L1((R)), the sequence { Vj }1 EN is a sequence in 
C0(0, T; L1(IR)) that converges to v in L (0, T; L1( R)). Finally, the result follows 
from the following standard inequalities: 

I vj(t) ITV(R) < I v(t) |TV(R) for j N, t E (0, T), 

inf vj (t, x) > inf v(t, x) for j E N, t E (0, T), 
x ER xER1 

sup vj (t, x) < sup v(t, x) for j E , t E (0, T), 
xER xER 

and from the following properties of the entropy solution v: 

I v(t) ITV(R) < I VO ITV(R) for t E (0, T), 
inf v(t, x) > inf vo(x) for t E (0, T), 
xEIR xERi 

sup v(t, x) < sup vo(x) for t E (0, T). 
xER xER 

This completes the proof. O 

We are now ready to prove Proposition (5.5). 

Proof of Proposition 5.5. Let us begin by proving the result in the case in which 
the entropy solution v is smooth everywhere except at most on a single curve 
C = {(x(t), t) : t E (0, T)}. 

By the definition of the form Ediv(u, v; t), the definition of the entropy solution, 
and Lemma 5.6, we have 

(5.2) E* V(u v; r)v) w (t, x, t', x') dx dt dx' dt'. 

After a couple of simple integration by parts, we can rewrite (5.2) as follows: 

E*i(, ;r < xF 
X (tl , xl) dxl dtl 

where 

- r fX(t) Il[v]Yx 
k,(t' X') - j t t &vV(u,v) v Ox' dx + [v] [I, 

+ j 9vV(u, v) vx px dx dt. 
x(t) 
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Here, [G] denotes the jump of the function G(v) at the point (x(t), t), that is, the 
value G(v(t, x(t) + 0)) - G(v(t, x(t) - 0)) . 

Taking absolute values and using Lemma 5.7, we obtain 

'r x x(t) r A 

|01 XI)z9 < 11 vv 11 I vx I I (px I dx + I [v] I I (px I + I vx I I (px I dx dt. 

Finally, by using the quantity D defined in Lemma 5.8, we obtain 

Ir x x(t) 
E* V(; 7) < 11 vv 11j iy Evx I D(t, X) dX + |[v] D(t, x(t)) 

+ fvxID(t,x)dx dt 

(5.3) < | V V IL??(O,T;TV(R.)) Jsup D (t, x) dt 
oxEER 

< I ITV(R) T I VO ITV(R) 11 Vv 11 W(T), 
Ex 

by Lemma 5.8 and since I v |L?O(O,T;TV(R.)) < I VO ITV(R). The result follows from 
(5.1). 

This proves the result for the case in which the entropy solution v is smooth 
everywhere except at most on a single curve C = {(x(t), t): t E (0, T)}. The same 
technique can be used to prove the estimate in the case the entropy solution has a 
finite number of discontinuity curves in each compact of (0, T) x IR. 

Let us now consider the general case. By the inequality (5.2), Lemma 5.9, and 
since the function V(u, v) is Lipschitz in v by Lemma 5.7, we have 

E v; T) <- JJJ V(u, v) xx' (t, x, t', x') dx dt dx' dt' 

=lim-AJ V v(u vj) foxx, (t, x, t', xI) dx dt dx' dt'. 

Since vj does not have discontinuities, we have, by (5.3), 

E* V(v; r) < lim 2 W TVQR) T Vi IL?(O,T;TV(R)) 11 Vvj 11 W(T) 

2 
I ITV(R) F I VO ITV(R) 11 VV 11 W(T), 

ex 

by Lemma 5.9. This completes the proof. C 

g. Proof of the error estimate. From ?5d and ?5e, we have that, for U(w) = 

11 u(T) - v(T) IIL1(R) < 2 uo - Vo HL'(R) + 8 (Ex + Et 1 f'(v)l) I VO ITV(IR) 

4 
+-T I vo ITV(R) 11 VV 11 

ex 

Letting et go to zero and minimizing over ex, we get 

11 u(T) - v(T) IIL1(1R) < 2 | uo- VO |Ll(R) + 4 I vo ITV(R){8T I VV 11}/ 

This completes the proof of Theorem 4.1. C 
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6. A SECOND APPLICATION: THE ENGQUIST-OSHER SCHEME 

As a second application, we consider the problem of obtaining a priori error 
estimates for the well-known Engquist-Osher scheme. For the sake of simplicity, 
we use uniform grids. Let At and Ax be two given positive numbers. Set xj 
j AX, Xj+1/2 = (xj + xj+1)/2 and tn = nAt. 

The approximate solution 

u(t,x) =uX for (t,x) E [t ,tn+l) x (xj-l/22xj+1/2), 

defined by the Engquist-Osher scheme, is given by the solution of the following 
equations: 

(un+1 -u7 )/At + (fEO(un, U>1) _ fEO(Uni, Un ))/AX 0, n ,ji E 2, 

where the numerical flux fE0 is given by 

f EO(a b) =f+(a) + f (b), 

where 

ra 

f+(a) j max{f '(s), o} ds, 
a 

f-(b) min{f'(s), 0} ds, 

and the initial condition is u(t = 0) = uo = PA (vo), where PAx is some oper- 
ator from BV(TR) to the space of functions which are constant on the intervals 
(Xj-l/2Xx+?l/2), for j E 2. 

The model equation of the Engquist-Osher scheme [10] is 

ut + (f(u))X - (v E(11) ux)x = 0, 

where 

(6.1) VEO (u) =Ax f'(u) I -At (f/(U)2 } 

Since we expect the approximate solution of the Engquist-Osher scheme to behave 
like the solution of (4.1) with the above viscosity, an error estimate similar to the 
one of Theorem 4.1 should hold provided that the viscosity coefficient is positive, 
which is true if 

At (6.2) Ax1 f'(ul) II ? 1. 

Our next result shows that this is indeed the case. Note that the bound of the 
error is given solely in terms of the entropy solution v. 

Theorem 6.1. Let the Courant-Friedrichs-Levy condition (6.2) be satisfied. Let u 
be the piecewise constant approximate solution given by the Engquist-Osher scheme 
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defined above, and let v be the entropy solution of (1.1) (with d = 1) where vo E 

LI (R) n BV(R); set 1Z(vo) = [inf elR (X), SUPR W] Then 

jj u(tN) - v(tN) IIL'(R) 2 11 UO- VO IILl(R) + 4 1 VO ITV(R){8t 11 VV 11I}l2 

+ I VO ITV(R) {b1 (AX)314 + b2 AX}, 

where 

1 vvI = sup VEO(W), 
wCR(vo) 

for vEO given by (6.1). When the entropy solution has a finite number of disconti- 
nuities on each compact set of (0, T) x R, we can take 

|| sup v EO(V(t, X -0), v(t, x + 0)), 
tE (O,T) 

xGRl 

and 

Ax_ (1 (V At f (v+) -f (v-)2\ 
vEO(v-v+)= 2f'(s)Ads-X v) 2 v+ -v ~- If()d x _ v _- 

The coefficients b1 and b2 are bounded functions that depend on the following quan- 
tities: 

cfl = 1 f'(v) I lAt/Ax, = f'(v) jj Ax/Il vv 11, s = {tN II vv II/x} 1/2. 

Note that if we drop the asymptotically unimportant terms containing the coef- 
ficients b1 and b2, this result is identical with its 'continuous version', Theorem 4.1 
(with a suitably defined viscosity). Note also that 

2 1+ fv ? If'(s)Ids 

is exactly equal to the so-called viscosity produced by the Engquist-Osher flux. The 
negative viscosity 

At f(v+)-f(v-) 2 

2 v+-v- 

is produced by the. explicit nature of the scheme. As is well known, the stability 
condition (6.2) ensures that the (total) viscosity of the scheme, vEO(V-,V+), is 

nonnegative. 
The above result is proven without explicitly using any regularity properties of the 

approximate solution; instead, we only use the regularity properties of the entropy 
solution. The only properties of the Engquist-Osher scheme that we explicitly use 
are that the scheme satisfies a (i) local entropy inequality which (ii) has conservation 
form and (iii) uses a two-point splitting entropy flux. Any other scheme with these 
properties satisfies a result similar to Theorem 6.1. In this paper, in order to better 
illustrate the new approach to a priori error estimates, we have restricted ourselves 
to a simple model scheme in a simple setting (the one-dimensional case and uniform 
grids) for the sake of simplicity and clarity. A generalization of Theorem 6.1 to the 
d-dimensional case and a general triangulation will be treated in a forthcoming 
paper. 
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7. PROOF OF THEOREM 6.1 

The proof of Theorem 6.1 is, essentially, a "discrete" version of the proof of 
Theorem 4.1. 

a. The choice of E(u, v; tN). Following what was done in the continuous case in 
?5a, we pick the form E(u, v; tN) as follows: 

tN N-1 

E(Uh, v; tN) = j j E E I (v(t, x)) q(t, x, t'+1, xj) Ax At dx dt, 
n=O jCZ 

where 

,Jn(c) =U'(u, -c) {(Un+1 -u u)/At + (A_f +(Ut) + A+f (Un))/AX}, 

and 

I FXj+112 
(7.1) $(t, x, tl', x) =Ax j p(t, x, t', s) ds. 

As in the continuous case, the entropy U is the Kruzkov entropy. The function 
p = p(t, x, t', x') is taken as follows: 

lp = WetI(t -t ) ne2 (X -X), (XI t) , (x', t') E R x R+ I 

where Et and ex are two arbitrary positive numbers and 

WEt(s) 1W(-) ?e. (S) = e (e )' 
et et 'Ex ex 

for any s E DR. The functions w and q are smooth functions satisfying the properties 
(2.1). As in the continuous case, we take a sequence of functions w converging to 
the function X. However, we do not want to do the same thing with the functions q 
since, as will become clear later in the proof, we need to estimate the total variation 
of the second derivative of q. Thus, we take a sequence of functions q converging 
to the function 

(1 + E)/2 for lxl < (1- E)/(1 + E), 

X,E (X) = (I + e)2 (Ixl)14 for ixj E [(1 - E)/(1 + E), 1], 

0 elsewhere . 

It is easy to verify that we can find a sequence of functions q such that 

(7.2a) lim I ITV(R) =I XE ITV(R) = 2 + E? 

(7.2b) lim | n' ITV(R) =I X'F ITV(R) =2 + e + I/e. 
77h4Xe 

b. The "divergence" and "dissipative" parts of E(Uh, v; tN). In this step, 
we rewrite the form E(Uh, v; tN) as the sum of its "divergence" and "dissipative" 
parts. 
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Proposition 7.1 (The "divergence" and "dissipative" parts of E(Uh, v; tN)). We 
have 

E(Uh,v;tN) =Ediv(uh,V;tN) + Ediss(uh,V;t N). 

The "divergence" part Ediv(uh, v; tN) is given by 

tN N-1 

EdiV (Uh, V; tN) = j E DIVjn (v(t, x)) ?5(t, x, tn+1, xj) Ax At dx dt, 
n=O jE2 

where 

DIV!'(c) =(U(un+1 - c) - U(uj, - c))/At+ (A/\F+ (uj, c) + A+F- (uj7, c))/Ax, 

where 

F' (u, c) = j (f )'(s) U'(s - c) ds. 

The "dissipative" part Ediss (Uh, v; tN) is given by 

tN N-1 

Ediss (Uh, V; tN) = Z E LREDjn (v(t, x)) q$(t, x, tn+1, xj) Ax At dx dt, 
n=O jG2 

where the local rate of entropy dissipation LREDj (c) is given by 

LREDj7(c) =h J (h(u`i) - h(s)) U"(s - c) ds 

+ + 
3 

J (f +(u f + 
(s)) U" (s - c) ds 

+ 
3+ 

J (-f(u>) ? f(s)) U"(s-c) ds, 

where h(s) =s - , (f + (s) - f - (s)). 

Proof. By definition, we have 

tN N-1 

E(Uh, V; tN) = Jj Z 5 Ijn(V(t, x)) '(t, x, tnl , x ) AX At dx dt, 
in=O jEZ 

where 

T1,7(C) =U'(Uj - C) {(Uj+1 _ Un)/,At + (A f n(u) + A+ f-(u))/A x} 

-u,(Un -C) (Uin+l - u n)/At + Ul(uj7 -C) A_ f+(Ujn)/IAx 

? U/(U, -C) A+ f (u) //Ax 
=--T (C) + T2 (C) + T13(C). 

Note that C'1(c) is a discrete version of the expression I(u, c) defined in ?5a. 
To obtain the result, we use the following simple identity: 
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U'(a - c) (g(b) - g(a)) = G(b, c) - G(a, c) - (g(b) - g(s)) U"(s - c) ds, 

where 

b 

G(b, c)-/,j g'(s) U'(s - c) ds. 

Thus, taking g(s) s, we get 

un?1 

'I'(c) =(U(ue1 - c) - U(ut - c))/At- j - U"(s - c) ds. 

Next, taking g(s) = f-(s), we obtain 

I2(C) =(A- F+(u0, c))/Ax + 34j- (f+(u) - f+(s))U"(s -c)ds. 
I3 

Finally, taking g(s) f+(s), we obtain 

413(C) =(AF-(u c))/AxA- 
J (f (u+i) - f-(s)) U"(s - c) ds. 

I3 

Gathering the last three expressions, we have 

'1n (C) =DIVjn (c) + LREDjn (c), 

where 

DIVjn(c) =(U(un+' - c) U(u"^ - c))/At + (A/F+(u, c) + A+F-(u, c))/An , 

and 

1 n+1 

LRE-W(c 3z /(11-+s)"scd 

LRED3(c) = - ( (u`+ s) Ul(s - c) ds 
t n 3 

- Ax] (f>u~+1) - f(s))*UU((s-cc)dd 

3 

~~hi {u1 1 - (+( -fu(U)n (s) 

+ 
A\X Jn+l (f (?1J-lU-f((s))sUd(s-c)ds 

? zX j (f-(Un ) - f-(s)) U"(s - c) ds 

1 ~~~n+1 1 

+ A ] (-f(u7?1) + f(s)) U"(sl(s--c)dsd 
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Using the definition of u ,+1 we get a 

L (C) zh jA fI {u (f+(llJ f)-(Un))-h(s))} U( c 

+ E j (fu )h-sfe(s)) U"(s - Uc) ds 3 

1/un 

+ \X fn+1 (-f(u1) +f (s)) U"(s - c) ds. 

This completes the proof. O 

Note that DIV]2 and LRED7 (c) are the discrete versions of the terms 

DIV(u, c)-{(U(u- C))t + (F(ll,c) - (u) U(u -c)} 

and 
LRED (u1i, c) f { U"u s-c) vd() ( ) 2}, 

respectively. To see this, consider that ui' means u(tT+l,x0) for arbitrary i E 

Expanding around (tn+li, xi ), we get 

DIV(c) {(U(u - c))t + (F(u, c) - u(u) U(u-c)x)z} + h . t., 
LRED7(c) = {U"(u- c) v(U) (u)2} + h. o. t., 

where 

V(U)= 2Ax{If,(U)I At (f/(U))21 2 A 

as expected. This simple computation shows that v(u) is nonnegative if ,\t- I f'(u) I 
< 1. The same result holds for the local rate of entropy dissipation. 

Proposition 7.2 (Nonnegativity of the local rate of entropy dissipation). The local 
rate of entropy dissipation LRED7 (c) is nonnegative if t I f'(s) I 1. 

Proof. From the expression of the local entropy dissipation LRED7 (c) in Proposi- 
tion 7.1, it is clear that LREDj (c) > 0 if the functions h(s), -f-(s) and f+(s) are 
nondecreasing functions of s. The functions -f- and f+ satisfy that property by 
construction. It is very simple to verify that under the condition Nt I f'(u) I < 1, 
the function h is nondecreasing. This completes the proof. O 

Corollary 7.3 (Nonnegativity of the dissipative part Ediss(Uh, V; tN)). If the hy- 
potheses of Proposition 7.2 are satisfied, then Ediss(Uh, v; tN) > 0. 

c. The dual form Ediv(Uh, v; tN) and the error term Terr(Uh, v; tN). To obtain 
the dual form and the error term, we simply make a couple of integrations by 
parts and use the fact that u(t',x') is equal to O on the rectangle [tn,tn?l) x 
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(xj-1/2, xj+l/2). We use the following notation: 

I FI = (F - F-)/2. 

Proposition 7.4. We have 

Ediv(Uh, V; tN) - Ediv(Uh, v; tN) +Terr(Uh, V; t), 

where 

E*iv( h,v;tN) - jjjj U(u(t',xI) - v(t,x)) pt(t,x,t',x') dxdtdx' dt' 

tN 

+ jj U(u(t' XI) -v(tN, x)) >(tN, x, t', xI) dx dt dx' 

tN 

-| j j U(u(t', x') - vo(x)) y(tN, x, t', x') dx dt dx' 

N-1 tN 

- // f l t (9(t,x?AxItn+1,x )-p(t,X- Ax,tn+1,XI 
n=OJIJOJR2A x' 

* F(u(tn, x'), v(t, x)) dx dt dx' At 
N-1 tN 

+ SR f IiR 2Ax (W(t, x + Ax, tn+l, x') -2 yo(t, xI tn+1 x') 
ni=O 

A 

+(p(t- xA-Ax, t , x 

-IF(u(tn, x'), v(t, x)) I dx dt dx' At, 

and 

N 

Terr (h v; tN) = jj U(U(tN,x') _v(t,x)) >(t, x,tN, xI) dx dxdt 

tN 

+ j j j U(U(t', x') - V(tN, x)) ,o(tN, x, t', x') dx dx' dt' 

tN 

- jINj j U(u(0, xl) - v(t, x)) V (t, x, 0, x') dx' dx dt 

tN 

-| j| j U(u(t', x') - vo(x)) p(O, x, t', x') dx dx' dt'. 

Proof. After a standard integration by parts in time and another in space, we easily 
get 

Ediv(Uh, V; tN) =Ediv,t(Uh, v; tN) + Ediv,x(Uh, V;t ), 
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where 

N-i tN 

Ediv,t(uh, V; t 
N 

] ] U(uI - v(t, x)) 

* (?0(tj x, tn I Xj)-_?O(tj X, tn+1 I X) A Ax dx dt 
N 

+ 
U 

jtNjU(u(tN, xj) _v(t, x)) q(t, x, tN, xj) Ax dx dt 

S JtNj U(u(O, xj) - v(t, x)) q(t, x, 0, x3) Ax dx dt 
jc7z 

and 

N-1 tN 

Ediv,x (Uh, V; t N) EE J (((t, X, tn+1, Xj) _-(t, X tn+l, Xj+ )) 
ni=O 3JE JlZ 

* F+(u0, v(t, x)) At dx dt 
N-1 tN 

+?EE M ( X(tnxt1 , xj_) - q(tx, tn+1 Ix)) 
n=O jZ 0 JR 

* F- (un, v(t, x)) At dx dt. 

Next, taking into account that u(t', x') is equal to un(xI) on [tn, tn+1), that IF I 
F+ -F- and noting that F = F+ + F-, we can rewrite Ediv,t(uh,v;tN) and 
Ediv,x (Uh, V; tN ) as follows: 

N N 

Edi,t (uh, V; tN) - J E 5 j U(u(t', xj) - v(t, x)) cti (t, x, t', x3) dx dt Ax dt' 

tN 

+ j j'~j U(u(tN, xj) - v(t, x)) q(t, x, tN, xj) Ax dx dt 

tN 

- X 1tN1 U(u(o, xj) - v(t, x)) q(t, x, 0, xj) Ax dx dt 
jCoZ 

and 

N-i ~ tN~ 

Ediv,x(uh,v;tN) 5 > ,/jKt, x, tI , Xj j) -(ti xI I x+l)) 

F(un, v(t, x)) At dx dt 
N-i tN 

- 
Sf (j(t, x, tn+ 

I 
Ixjil) -20(t, x, tn1, xi) 

+ 0(t, x, tn+ I 
I x3+)) I F(Un, v (t, x)) A At dx dt. 
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Taking into account that Ot =-0t', that q(t, x, t', xj?i) = (t, x T Ax, t', xj), that 
u(t', x') is equal to uj(t') on (Xjl/2, Xj+1/2), and that, by (7.1), 

1 rXj+112 

3x J-1/2 

we get 

N tN 

Ediv,t (Uh, v; tN) j j ] U(u(t', x') - v(t, x)) ot (t, x, t', x') dx dt dx' dt' 

tN 

+ j j j U(u(tN, X') - v(t, x)) O(t, x, tN, x') dx' dx dt 

- y jtNj U(u(O, xI) - v(t, x)) o(t, x, 0, x') dx' dx dt 

and 

Ediv,x(Uh, V; tN) > E ff 21 (o(t, x?+Ax, t + , xI) - (t, x-Ax, tI+1, x')) 

*F(u(tn, x'), v(t, x)) dx dt dx'At 
N-i tN~ 

1 ( (t x + Ax, tn+1, x') - 2(t, x, tn1, XI) 

ri= JJoJR2Ax 
+?O(t, x- Ax, tn, x)) 

F(u(tn, x'), v(t, x)) I dx dt dx'At. 

Finally, by using the definition of the dual form, we can write 

Ediv(Uh, V; tN) -Ed*iV(Uh, V; tN) 

t N 

+ j j U(u(tN, X') - v(t, x)) O(t, x, tN, x') dx' dx dt 

- a 1tN1 U(u(0, x') - v(t, x)) o(t, x, 0, x') dx' dx dt 

tN tN 

+ j j]] U(u(t', x') - V(tN, x)) so(tN, x, t', x') dx dx' dt' 

N 

- j j j U(u(t', x') - vo(x)) sO(tN, x, t', x') dx dx' dt'. 

This completes the proof. D 

It is clear from the above proof, that the definition of O(t, x, t', xj) (7.1) allows us 
to have an error term Terr (U, v; tN) exactly equal to the error term of the continuous 
case. As a consequence, the next two steps are identical to the ones of the continuous 
case. 
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d. A lower bound for the error term Terr(U, v; tN). 

Proposition 7.5. We have 
N 

Terr(U, V; tN) > W(tN) e(tN) + We (tN -t) e(t) dt 

tN 

- W(tN) e(O) - j Wet (t) e(t) dt 

- 4W(tN) {|| f (v) ||Et +? CX} V VO ITV(R) 

Since the functions w and rq satisfy the properties (2.1), to obtain the above 
result, we can simply take T = tN in Proposition 5.2. 

e. The approximation inequality. 

Proposition 7.6 (The approximation inequality). We have 

e(tN) < 2e(O) +8 (ex+ etIIf'(v)II) I vo ITV(R) 
? 2 lim sup {E*iv(u, v; t )/W(t)} 

W4X 1<n<N 

? 2 || f'(v) 11 I VO ITV(R) At. 

To prove this result, we need the following auxiliary lemma, which is a slight 
modification of Lemma 5.4. 

Lemma 7.7. Let 0: [0, T] 4 IR+ be a nonnegative, measurable function such that 
for all N E N 

tN tN 

Wo(tN) 0(tN) + j w (tN - t) 0(t) dt < W (tN) C ? we ̀ (t) 0(t) dt, 

where w? = X. Moreover, assume that, for t E [tn, tn+l), 

0(t) < 0(tn) + c At. 

Then, forTr E [0, T], 

0(T) < 2C+c/At. 

Proof. The proof is similar to the proof of Lemma 5.4. If tn < et, we have for 
t E [0, tn] that woo (tn -t) t w? (t) _ 1/2et , and so 

0(tn) < C. 

By the second hypothesis on 0, for t < et, 

0(t) <C+ cAt. 

To estimate 0(T) for T > et, we proceed as in the proof of Lemma 5.4 to get 

ret 

0(T) < ? { j {We (t) - w(,T - t)} dt/W??(T)} {C + c At} 

<20? cAt. 

This completes the proof. D 



562 BERNARDO COCKBURN AND PIERRE-ALAIN GREMAUD 

Proof of Proposition 7.6. This result follows from Proposition 7.5 and Lemma 7.7 
with 

0(tn) 
- 

(tn), 

C 4 {f11 f'(v) 11 ft + Ex} I VO ITV(R) + lim sup E*j,(u, v; tn)/W(tn) 
W4X 1<n<N 

C - f'(V) || I VOIITV(R)- 

This completes the proof. D 

f. The estimate of the dual form Ed*i(u, v; tn)/W(tn). The following result is 
the analog of Proposition 5.5. 

Proposition 7.8. We have 

lim sup {E*iV(u, v; tn)/W(tn)} < - tN vo TV(TR) 1 VV fl + Esnaii, 
WX 1<n<N (x 

where the quantity 11 av 11 is defined in Theorem 6.1 and the small term Esmall is 
given by 

Esmall = cl tN vo ITV(IR) || Vv || + C2 || f'(v) || I VO ITV(IR), 

where 

c1=-2 T17 ITV(R) -1 ? 7 IITV(R) At 
Ex Ex et 

C2( 17 ITl(R) () (2 + 'At (AX)2 TI (TVQR) (At)2 |f f'(v) || tN + (2 + 4 t ) At. 

We want to point out that it is very simple to show that the dual form 
E* v;tn)/W(tn) can be bounded by a term proportional to Ax/ex + At/et. 
However, to obtain the finer estimate of Proposition 7.8, an extra effort must be 
made. We thus proceed in several steps. In what follows, whenever no confusion 
is possible, we abbreviate F(u(tn, x'), v(t, x)) and I F(u(tn, x'), v(t, x)) I by F and 
I F l, respectively. 

First step: Rewriting the dual form Ediv (u, v; t). We start by suitably rewrit- 
ing the dual form. To state our result, we need to define the following regularizations 
of the function p: 

1 tn+1 

(7.3a) $(t, x,tn+1, x) = t j W(t, x + p,t x) ds, 

I Ax/2 

(7.3b) O(tj X, tn+1 I XI) = Ax P (t, X + p, tn+l, XI) dp, 

z Ax/2 

fn 1 I + ., tn 1 I XI 
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Lemma 7.9. We have 

Ediv(uh,v;tN) <TEvisc(uv;t N) + TEhot(u,v;t N), 

where 

TEvi?(u, v; tN) = + 2 Sf11 {AtFs3xt + Ax IF I z} dx dt dx' At 

N-1 

-- S j A {tF(u(tn, x'), V(tN, x)) 

* fx(tNx, tn+l I x)} dx dx' /At 
N-i 

? E jjAt { F(u(tnh XI), V(0, X)) 
n=O 

* x (0) x, tn+1 xl) } dx dx' At, 
N-1 tN 

TEhot (u V; tN) = -jj j F @ dx dt dx' At 
n=O 

IN-1 

+ 5 j j At F(u(tn, X'), v(tN, x)) 
2 

n=O 

* f (tNI X, tn+l Ixl) dx dx' At 

I N-1 

-- E 5 j \At F(u(tn, x'), v(0, x)) x (o) x, tn+1 I x') dx dx' At, 
2n=O R2 

and 

? = { 2(ox (t, x + Ax/2, 0?1, x') + Ox (t, x - Ax/2, t +, x'))- t x, t +, x')} 

+ 
t 

2xt(t, x tn+l, x). 

The fact which suggested the above decomposition of the dual form is that 
the term TEvis(u, v; tN) contains the information of the main term of the local 
truncation error of the numerical scheme, that is, it contains the information about 
the effective viscosity of the scheme. To see this, assume that U(w) = w I and that 
v is smooth. After a couple of integration by parts, the term TEvis,(u, v; tN) can 
be written as 

2 j j t Aj tFt + Ax I F Ix}sox dx dt dx' At, 

and since 

2{/At F(u, v)t + Ax I F(u, v) x 4 = - U'(u, v)4 {lAt f'(v) vt + Ax I f'(v) I vx 

= - U'(A,v) 2 { A-t (f'(V))2 + Ax I f'(v)I }Ivx 

-U' (u, v) v(v) vx, 
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our claim follows. The term TEhOt(u, v; tN) contains the high-order terms of the 
truncation error of the scheme. 

Proof of Lemma 7.9. Using the notation introduced above, and using the fact that 
v is the entropy solution, we have 

tN tN~ 

E* (Uh v; tN) <j j F(v(t, x), u(t', x')) (p (t, x, t', x') dx dt dx' dt' 

N-1 tN 

- E X A X F dx dt dx' At n=o iO . 

+ - Ax yx I F I dx dt dx' At, 
n=2 Jm 

JOJmR 

where 

(o= 2(q(t, x + Ax/2, tn x') )+ x (t,x - Ax/2, t +,x')). 
2 

Taking into account that for U(w) = w I we have F(v, u) = F(u, v), and writing 

tN N-1 

J F(v(t, x), u(t', x')) px(t, x, t', x') dt' = F wx(t, x, tn+1 I x') (tn+l- tn) 
n=0 
N-i 

= S F f x (t, x, tn+1, x') At, 
n=o 

we obtain 

N-N tN 

E*iv (Uh,V; tN) < - F{ - x(t tn+1 /) x')dxdt dxl/\t 
n=o iO . 

+ 1 E j j Ax F I (xx dx dt dx' At. 
2n=o iO R 

Adding and subtracting the term 

1N1 tN 

S jjAt F xt dx dt dx' At, 2n=o iO . 

we get 

N-1 tN 

E*iv(uh v; tN) <- 5 j]] F b dx dt dx' At 

+ 2 EA{/\t F 3xt + Ax F (Pxx} dx dt dx' At. 

n=2 'i 
J JoJ 

The result now follows easily by using the definitions of the terms TEvj"c (U v; tN) 
and TEh0t (u, v; tN). This completes the proof. O 
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Second step: The functions ,3 and 4'. From Lemma 7.9, it is clear that what 
we have to do next is to express the functions Xo and 4' in terms of the function ,o. 

Lemma 7.10. We have 

A(t, x, t', x) ) ((t, x, t', x'(-1p) dp 

and 

@p =@xx'l + bXp'2 + tD3t' 
xx x xx x tt,x', 

where the functions (i = 4i (t, x, tn+' , x'), i = 1, 2, 3, are given by 

41 AX It (1 lPI )3 5(t, X, tn+1 - s, x'-p) dpds, 

6At Axj~ Ax 

_2 Ax J 1PI )2 (1 +PI 

,fi = +S :J ( S) (l(t x IP ) (vt+-,Tp) dp ds 
6 Ax Ax 2 Ax 

43 At A~tfAx xsII Wt XtnI+ 
2Ax A t A 

Proof. The first equality follows from the definition of o, (7.3c). To obtain the 
expression of 4', we first rewrite 4' as 

' =4'1 + ?42 + ?D3 

where 

<?1 = -,, 
(t, x, tn+1 X) x')-; x (t, xi tn+1 ,x ),I 

4,2 =1 (o (t, x + Ax/2, tn+1, x') + Ox (t, x - Ax/2, tn1, x')) - (t x, t+, x') 

4t3 = x(t, xi tn+l x') (t- xi tn+1, x) - 2 Xx, tn?1, x') 

To show that 4 D1 - 4,1 42 = 4,2,, 4$3 = 1{3 //, we use the definitions of , , 
and p given by (7.3), and we perfom several simple integration by parts. C 

Third step: Estimating TEViSc(u, v; tN). We are now ready to estimate the term 
TEVi,,,(u, v; tN). 

Lemma 7.11. We have 

TEviSc(u, v; tN) TotN I vo ITV(1R) || VV II 

where 

To = sup { | (t,x,tn+l,x) I dxl At 
tE (O,tp ) n=0 
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In the proof of the above result we denote by [G] the jump of the function 
G(v) at the point (x(t), t), that is, the value G(v(t, x(t) + 0)) - G(v(t, x(t) - 0)) 
G(v+) - G(v-). Also, for the sake of simplicity, we do not render explicit the 
dependence of F and IFI on u; recall that 

u 
F (u, v) = f '(s) U'(s -v) ds, 

u 

I F I(u,v) = I f f'(s) I U'(s -v) ds. 

Proof of Lemma 7.11. It is enough to prove the result in the case in which the 
entropy solution v is smooth everywhere except on a single curve C = { (x (t), t): 
t E (0, tN)} since the general case follows easily from this case, as we have shown 
in the proof of Proposition 5.5. 

After a couple of simple integration by parts, we can rewrite TEvisc(u, v; tN) as 
follows: 

N-1 

TEviSc (u, v; tN) = S j (tn+l, x') dx' At, 
n=O D 

where 

1tN x (t) 

'J (t+1 x') ] ) tFt + Ax I F lx x dxdt 
2 -oo 

tN so 

--X X {AtFt + AxIF lx}9x dxdt 2 o (t) 1tN1o f 

{-/At [F] H x [ F ]}x dt. 

Setting 

=Ax{ [(F At [F] [f] v(v-,v+;u)= 2 { [vI /Ax [v] [v] 

and writing v~ instead of (v-,v+;u(tn, X')), we have 

tN px(t) ? 
oc 

T (tn+lX,X) =_ f I vxxdx+i [v] 3X+1 ? vxv xdx' dt. 

Setting 

izl= sup supIv(v(t,x-0),v(t,x+0);u)l, 
tE(O,tN) uER 

xER 

we obtain, after taking absolute values, 

qJ(tn+l1,x') tN { ) I IV|xO I dx?+[v] IIPx I j+ Vx11xPcIdx}dt. 
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Inserting this upper bound into the right-hand side of the definition of 
TEvisc(u, v; tN), we get 

tN x (t) o 
TEvisc(u, v v; t j v 1 I ?vvI?dj+| [V] |+ | I V I dx dt 

<To tN I V IL??(O,tN;TV(Ri)) 11 V 11 

To prove the result, it remains to show that I v(v, v+; u) ? < v(v-, v+). To do this, 
set N(u) = f/(v-,v+;u) and note that 

&t N(ul) = Ax U'(u - v+) - U'(u- ) -t )f(u _ t(f (v+)-f(v) ) f'u 
2 {IJ kU/I Ax V + , fu)J 

This implies that N(u) is constant when u does not lie between v- and v+ and 
that, since the stability condition (6.2) is satisfied, N is monotone. Hence, 

I N(u) I < max{N(v+), N(v)} = v(v-, v+). 

This completes the proof. O 

The term To will be estimated in the fifth step below. 

Fourth step: Estimating TEh0t (u, v; tN). We are now ready to estimate the 
term TEh0t (u, v; tN). We start with the following result. 

Lemma 7.12. We have 

TEh0t (u, v; t) c f (v) 11 I VO ITV(R) 

where c= (Ti + T2+ 11 f'(v) T3) tN + 2(T4?+ T5), and 

T1= sup {ZjlI/x/ (t, x, tn+l, X) I dx' At 

T3= sup~ { j ix(t x, ?~,x)d'A} 

tE(O,t {} n=O } 

N-1 

T25= sup {ZjUAt | (t, x, tn+, x') dxl At} 
tE(O,t) n=O 

xERi 

N-1 

T3 = sup { ;, | | b3 x (tl X, tn+1 , xI) dx/\, 

tE {O,tN n=O 
xER 

T5 = sup E | 2/\I (D3(tl ,xtn+1 ,x XI) x/\ 
tE {O,t} n=O 

xERi 

Proof. First, assume that the entropy solution v is smooth. By using Lemma 7.10, 
we rewrite TEh0t (u, v; tN) as follows: 
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N-1 tN 

TEhot(u, V;tN) = Ziii F {x,l + X 2x/x/ + ? 3// } dx dt dx' At 
n=o 2 t 

IN-i 

+ 2 j fAt F(u(tn, X'), V(tN, x)) x s(tN, X, tn+1 X') dx dx' At 
n=O 2 

- E JJ AtF(u(tn2 xI), v(O, x)) ,x (O, x, tn1 Ix ) dx dxl At. 
?2 

Integrating by parts, we get 

N-i tN 

TEh,,t (u, v; tN) = JJ Fs@x l/x/ + 2/x/ dxdt dx' At 
n=o ?2 

N-1 tN 

+ N JJJFt t tjxX{ dx dt dx' At 

n=20 
N-1 

? J 5 J j F~(u(tn, x'), v(tN, x)) At ,(0,3x, n x') dxNdx' At 

Takin intoaccout tha ~ = eFus itegratIonI by part on the Athr 

n=O 2 

N-1 

+ E J J F(l(tn, XI, V(O' X))??D3xl (O X, tn+lX,} xxA 

n=O 2 

N-1 

2 J7 Fx (U(tn XI,X )V(tN IX)) At g tN, X, tn+l, XI) dx dx' At 

N-1 

+ - J J Fx (U (tn, XI), V (O) X,, A t w (O,x,tn+1, XI) dx dx' A t. 
2n=O t 

Takin intoaccout th t /?3, =?t3,X7 we use integration by parts on the third 
and fourth terms of the right-hand side. We then take absolute values and use the 
inequalities 

Fx< I ?f'(v)H I vxL 

IFt I < f'(v) 12 | vxL 

to get 

TEhot(u, v;tN) < {Ti + T2}J f'(v)| I vx I dx dt + T3J f f'(v) 12 vxI dxdt 

? T4 j f/(v(tN)) vx(tN) dx + T4 I f'(vo) I vox I dx 

? T5j I f/(V(tN)) Vx(tN) dx + T5j I f (vo) I vox Idx, 

and the inequality follows. The result for general v follows from a classical density 

argument. This completes the proof. O 
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Fifth step: Estimates of the terms Ti, i = 0,.. ., 5. 

Lemma 7.13. If we let w tend to X, we get 

To?(1?~ At 
2~ 

A(x) lriTV(2IR) (1 ? At) W (tN) 
To <( 1- T() (. 2 ( 

Et EX 

T < (X)2 W(tN), 
Ct 

Ts ?t(12 )W(tN). 
6t 

Proof. All the terms Ti are of the form SUPtE(O,tN) ei. In what follows, we only 
xEl 

work with ei. Throughout the proof, we use the fact that 

(7.4) lim sup WRt)2 W(tN) < 2 

W4 
+X t(Ot')2 WW (')dtN-Ct 

which can easily be established by direct calculation. 
Let us start with e0. By definition, 

By using the definitions of , and , as well as Lemma 7.10, we can rewrite t0 as 
follows: 

= {W( ? A(t-t W+ TV(-t}TV-t)t}t< 

* W{ \ tE (1-itN) fo w ?et (tl-Xtl + ) d'tp} 

whic caso, ybeetbihd ydrc cluain 

NNN--1+ 
(3? <{ /0 We (- I ) x dt X, tn1 XI) I dx Aet.t s' 

E)o 2(t) + /t tn+1t AT(t,t-) 
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Relation (7.4) leads to 

8A < 2(1 + t)W(tN) 
L'A 

Tv(R) 
Et Ex 

which proves the estimate of To. 
Let us prove the second estimate. By definition of e1, 

N-1 
1 =E| I j l'x' (t, X, tn+1 , x') dx' At 

n=O 2t 

={ 1t Wet (t - tl) dt} { (I - Ax (x - x + p)X'X' dx dpj 

<2(N) 
Ax Ax 

I 
(1 _P)3 

I'q ITV(R )d} <2 W(tN){6 j(I Ax 2 dpj 

=2 W(tN) (A)212 C|TV(R) 

and the second estimate follows. The other terms can be analyzed in a similar 
way. ? 

Sixth step: Proof of Proposition 7.8. FRom Lemmas 7.11 and 7.13, we have 

TEvisc(u, v; tN)/W(tN) < 2 IR) tN VO |TV(R) (1 + 
At VV 

and from Lemmas 7.12 and 7.13, we get 

TEhot(u,v; tN)/W(tN) c C|f (V)|||VO 

where 

( 77 TV(RI) ( ?At (Ax' )2 + rTV(IR) (At)2II f(V) I tN + (2 ?4At)At. 
\\ 6 Et E2 EtC EX Et 

By Lemma 7.9, Proposition 7.8 follows from the two above inequalities after a 
simple rearrangement of terms. This completes the proof of Proposition 7.8. 

g. Proof of the error estimate. By Propositions 7.6 and 7.8, we have 

e(tN) < 2 e(O) + 8 (Ex +? Itlf'(v))|) I VO ITV(R) + tN I VO ITV(R) 11 VV 11 
Ex 

+ 2 Esmall + 2 Ilf'(v)| | Vo |TV(R) At, 

where Esmall = Esmall (q7, Ct, Ex) is defined in Proposition 7.8. 
In the continuous case, both auxiliary functions w and r were taken to converge 

to the function X. Accordingly, we let r go to the function Xe We thus use (7.2) 
to obtain the following inequality: 

e(tN) < 2 e(O) + 8 Ex vo ITV(R) + t 
N 

VO ITV(R) 11 VV 11 + ?(e) Ct, (x), 
Ex 
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where 

>(6v (Ev(x) = 8 Et If '(v) I | Vo ITV(V R) +2Esmall (Xe, 'Et, Ex)+ 2 IIf'(v)I I VO |TV(R) At. 

Proceeding as in the continuous case, and assuming that 11 v$ 0, we take the 
optimal value Ex = /tN H vj j/2 to get 

e(tN) < 2 e(O) + 4 | vo ITV(R) {8 tN || vv }112 + ?I((t, 7tN || Vv 11/2). 

Now, we only have to suitably choose the parameters e and ct. Note that, unlike 
the continuous case, we cannot let ct go to zero! By using (7.2), we rewrite 1 as 
follows: 

4(,E Wt/ 1 f'(V) 11, t 11 Vv 11/2) = (a, Ax + a2 (AX)1/2 ? + a3 Et + a4 AX3/2 _ 

Ax (AX)3/2 (Ax)2 
+ a5 - + a6 e +?a7 e ) - VOITV(R)i 

E ~~Et (CEt 

where 
8 

a1 =6cfl+?( 
3 

4 12 a2 = 4VX ? + -4 (Ax)1/2 
3 

a3 = 8, 

a.4 = 4d'cfl N? - 

2 
cfl (Ax)1/2 ?2v cfl2 Q, 

3 
4 

a5= - 

3 

a6 = 4v' cif , +?2Vd cfl2 Qe?8 cfl2 (Ax)1/2 + cfl (Ax)1/2 

a7= - 
2 

Ccfl, 
3 

and cfl, (, and i, are as defined in Theorem 6.1. We can see that if we take 
e = a5/a2 (AX)1!4 and Et = a6/a3 (AX)3/4, we have 

(D(E ft(V) || v1tN || vv 11/2) = (bl( AX)3/4 + b2 AX) I VO ITV(R), 

where 

bi=2( a2a5? /3a6), b2= a,?+ a43 + a7 
a2 a6 a5 a6 

This proves Theorem 6.1. 
Let us finish this section by comparing the size of the parameters Ex and Et in 

both of the cases treated in this paper. In the model case treated in ?5, we took 
Ex proportional to 1J vv 11l/2 and we let Et go to zero. This gave an indication that 
in the discrete case treated in this section, it would be reasonable to expect the 
parameter Et to go to zero faster than Ex. This was indeed the case, since Ex was 
taken to be proportional to II Vv 11J1/2, which is proportional to (Ax)1/2, while Et 

was taken to be proportional to (AX)3/4. Kuznetsov [15] took both Ex and t to be 
proportional to (Ax)1/2. 
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8. CONCLUDING REMARKS 

In this paper, we have showed how to suitably modify the original Kuznetsov 
approximation theory for scalar conservation laws [15] to obtain a general theory 
for a priori error estimates. As a first application of this theory, we have obtained 
a (new) optimal error estimate between the approximate solution defined by the 
Engquist-Osher scheme in uniform grids and the entropy solution without using any 
regularity properties of the approximate solution. The only properties explicitly 
used are that the Engquist-Osher scheme satisfies a (i) local entropy inequality, 
that (ii) has conservation form, and that (iii) has a two-point splitting entropy flux. 

The results of this paper will be extended in several directions. In a forthcoming 
paper, we obtain optimal error estimates for numerical schemes that do not possess 
splitting fluxes, like Godunov and Glimm schemes. In another paper, we consider 
multidimensional schemes satisfying the three properties mentioned above. The fact 
that we are not forced to obtain regularity properties of the approximate solution 
allows us to obtain optimal error estimates for these (necessarily monotone) schemes 
defined in general triangulations. 

That it is possible 'to pass to the limit' (and to actually obtain not just con- 
vergence but error estimates) without using any regularity properties of the ap- 
proximate solution might sound strange. After all, a great deal of effort has been 
invested into devising and refining methods, like the method of compensated com- 
pactness, that allow to 'pass to the limit' with the weakest possible regularity of the 
functions of the sequence under consideration. However, we must point out that 
we are strongly using the fact that we already know the existence, uniqueness, and 
regularity properties of the solution to which we want to converge. In this paper, 
we have shown how to use the regularity properties of the exact solution instead 
of the regularity properties of the approximate solution to get the error estimates. 
How to apply this idea to hyperbolic systems constitutes an exciting challenge. 
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